Mechanism of wave breaking from a vacuum point in the defocusing nonlinear Schrödinger equation.
نویسندگان
چکیده
We study the wave breaking mechanism for the weakly dispersive defocusing nonlinear Schrödinger equation with a constant phase dark initial datum that contains a vacuum point at the origin. We prove by means of the exact solution to the initial value problem that, in the dispersionless limit, the vacuum point is preserved by the dynamics until breaking occurs at a finite critical time. In particular, both Riemann invariants experience a simultaneous breaking at the origin. Although the initial vacuum point is no longer preserved in the presence of a finite dispersion, the critical behavior manifests itself through an abrupt transition occurring around the breaking time.
منابع مشابه
Asymptotic soliton train solutions of the defocusing nonlinear Schrödinger equation.
Asymptotic behavior of initially "large and smooth" pulses is investigated at two typical stages of their evolution governed by the defocusing nonlinear Schrödinger equation. At first, wave breaking phenomenon is studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case of dissipationless shock wave arising after the wave breaking point. Th...
متن کاملModulational instability in the dynamics of interacting wave packets: the extended Korteweg-de Vries equation
This paper is concerned with interacting wave packet dynamics for long waves. The Kortweg-de Vries equation is the most well-known model for weakly nonlinear long waves. Although the dynamics of a single wave packet in this model is governed by the defocusing nonlinear Schrödinger equation, implying that a plane wave is modulationally stable, the dynamics of two interacting wave packets is gove...
متن کامل. A P ] 1 2 Fe b 20 07 WKB ANALYSIS FOR THE NONLINEAR SCHRÖDINGER EQUATION AND INSTABILITY RESULTS
For the semi-classical limit of the cubic, defocusing nonlinear Schrödinger equation with an external potential, we explain the notion of criticality before a caustic is formed. In the sub-critical and critical cases, we justify the WKB approximation. In the super-critical case, the WKB analysis provides a new phenomenon for the (classical) cubic, defocusing nonlinear Schrödinger equation, whic...
متن کاملAnalytical Soliton Solutions Modeling of Nonlinear Schrödinger Equation with the Dual Power Law Nonlinearity
Introduction In this study, we use a newly proposed method based on the software structure of the maple, called the Khaters method, and will be introducing exponential, hyperbolic, and trigonometric solutions for one of the Schrödinger equations, called the nonlinear Schrödinger equation with the dual power law nonlinearity. Given the widespread use of the Schrödinger equation in physics and e...
متن کاملOn the existence of dark solitons of the defocusing cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity
We provide a simple proof of the existence of dark solitons of the defocusing cubic nonlinear Schrödinger equation with periodic inhomogeneous nonlinearity. Moreover, our proof allows for a broader class of inhomogeneities and gives some new properties of the solutions. We also apply our approach to the defocusing cubic-quintic nonlinear Schrödinger equation with a periodic potential. We consid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 89 2 شماره
صفحات -
تاریخ انتشار 2014